BioCapTM IGF1R mRNA
Catalog Number: 1201201SKU | Price | Buy |
---|---|---|
1201201-500ug | $2,805.00 |
Ships in ~10 business days
Description
GENE NAME (BOLD) / SYNONYMS:
IGF1R
SPECIES:
Human
ENCODED PROTEIN NAME:
Insulin-like growth factor 1 receptor
Function:
Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R. When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin. (Source: UniProt http://www.uniprot.org/uniprot/p08069)
Sequence (1367 aa):
IGF1R
SPECIES:
Human
ENCODED PROTEIN NAME:
Insulin-like growth factor 1 receptor
Function:
Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R. When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin. (Source: UniProt http://www.uniprot.org/uniprot/p08069)
Sequence (1367 aa):
MKSGSGGGSP TSLWGLLFLS AALSLWPTSG EICGPGIDIR NDYQQLKRLE NCTVIEGYLH ILLISKAEDY RSYRFPKLTV ITEYLLLFRV AGLESLGDLF PNLTVIRGWK LFYNYALVIF EMTNLKDIGL YNLRNITRGA IRIEKNADLC YLSTVDWSLI LDAVSNNYIV GNKPPKECGD LCPGTMEEKP MCEKTTINNE YNYRCWTTNR CQKMCPSTCG KRACTENNEC CHPECLGSCS APDNDTACVA CRHYYYAGVC VPACPPNTYR FEGWRCVDRD FCANILSAES SDSEGFVIHD GECMQECPSG FIRNGSQSMY CIPCEGPCPK VCEEEKKTKT IDSVTSAQML QGCTIFKGNL LINIRRGNNI ASELENFMGL IEVVTGYVKI RHSHALVSLS FLKNLRLILG EEQLEGNYSF YVLDNQNLQQ LWDWDHRNLT IKAGKMYFAF NPKLCVSEIY RMEEVTGTKG RQSKGDINTR NNGERASCES DVLHFTSTTT SKNRIIITWH RYRPPDYRDL ISFTVYYKEA PFKNVTEYDG QDACGSNSWN MVDVDLPPNK DVEPGILLHG LKPWTQYAVY VKAVTLTMVE NDHIRGAKSE ILYIRTNASV PSIPLDVLSA SNSSSQLIVK WNPPSLPNGN LSYYIVRWQR QPQDGYLYRH NYCSKDKIPI RKYADGTIDI EEVTENPKTE VCGGEKGPCC ACPKTEAEKQ AEKEEAEYRK VFENFLHNSI FVPRPERKRR DVMQVANTTM SSRSRNTTAA DTYNITDPEE LETEYPFFES RVDNKERTVI SNLRPFTLYR IDIHSCNHEA EKLGCSASNF VFARTMPAEG ADDIPGPVTW EPRPENSIFL KWPEPENPNG LILMYEIKYG SQVEDQRECV SRQEYRKYGG AKLNRLNPGN YTARIQATSL SGNGSWTDPV FFYVQAKTGY ENFIHLIIAL PVAVLLIVGG LVIMLYVFHR KRNNSRLGNG VLYASVNPEY FSAADVYVPD EWEVAREKIT MSRELGQGSF GMVYEGVAKG VVKDEPETRV AIKTVNEAAS MRERIEFLNE ASVMKEFNCH HVVRLLGVVS QGQPTLVIME LMTRGDLKSY LRSLRPEMEN NPVLAPPSLS KMIQMAGEIA DGMAYLNANK FVHRDLAARN CMVAEDFTVK IGDFGMTRDI YETDYYRKGG KGLLPVRWMS PESLKDGVFT TYSDVWSFGV VLWEIATLAE QPYQGLSNEQ VLRFVMEGGL LDKPDNCPDM LFELMRMCWQ YNPKMRPSFL EIISSIKEEM EPGFREVSFY YSEENKLPEP EELDLEPENM ESVPLDPSAS SSSLPLPDRH SGHKAENGPG PGVLVLRASF DERQPYAHMN GGRKNERALP LPQSSTC
Gene Coding Sequence:
For the DNA coding sequence that is used as the template to synthesize the IGF1R mRNA mimetic, please contact us at customerservice@pharna.com.
For potential mRNA mimetics encoding splice variants or isoforms of your interest, please contact us at customerservice@pharna.com and it is our promise to fulfill your needs.
For the DNA coding sequence that is used as the template to synthesize the IGF1R mRNA mimetic, please contact us at customerservice@pharna.com.
For potential mRNA mimetics encoding splice variants or isoforms of your interest, please contact us at customerservice@pharna.com and it is our promise to fulfill your needs.